3 0 Ju l 2 00 4 Gaudin model and opers

نویسنده

  • Edward Frenkel
چکیده

This is a review of our previous works [FFR, F1, F3] (some of them joint with B. Feigin and N. Reshetikhin) on the Gaudin model and opers. We define a commutative subalgebra in the tensor power of the universal enveloping algebra of a simple Lie algebra g. This algebra includes the hamiltonians of the Gaudin model, hence we call it the Gaudin algebra. It is constructed as a quotient of the center of the completed enveloping algebra of the affine KacMoody algebra ĝ at the critical level. We identify the spectrum of the Gaudin algebra with the space of opers associated to the Langlands dual Lie algebra g on the projective line with regular singularities at the marked points. Next, we recall the construction of the eigenvectors of the Gaudin algebra using the Wakimoto modules over ĝ of critical level. The Wakimoto modules are naturally parameterized by Miura opers (or, equivalently, Cartan connections), and the action of the center on them is given by the Miura transformation. This allows us to relate solutions of the Bethe Ansatz equations to Miura opers and ultimately to the flag varieties associated to the Langlands dual Lie algebra g.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 Gaudin model and opers

This is a review of our previous works [FFR, F1, F3] (some of them joint with B. Feigin and N. Reshetikhin) on the Gaudin model and opers. We define a commutative subalgebra in the tensor power of the universal enveloping algebra of a simple Lie algebra g. This algebra includes the hamiltonians of the Gaudin model, hence we call it the Gaudin algebra. It is constructed as a quotient of the cent...

متن کامل

ar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs

2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

- qc / 0 10 20 73 v 3 2 4 Ju l 2 00 1 BF gravity and the Immirzi parameter

We propose a novel BF-type formulation of real four-dimensional gravity, which generalizes previous models. In particular, it allows for an arbitrary Immirzi parameter. We also construct the analogue of the Urbantke metric for this model.

متن کامل

N ov 2 00 2 OPERS AND THETA FUNCTIONS

We construct natural maps (the Klein and Wirtinger maps) from moduli spaces of vector bundles on an algebraic curve X to affine spaces, as quotients of the nonabelian theta linear series. We prove a finiteness result for these maps over generalized Kummer varieties (moduli of torus bundles), leading us to conjecture that the maps are finite in general. The conjecture provides canonical explicit...

متن کامل

2 00 2 Opers and Theta Functions

We construct maps from moduli spaces of vector bundles on a Riemann surface X to opers on X, using nonabelian theta functions. Opers are generalizations of projective structures, and can be considered as differential operators, kernel functions or special bundles with connection. The matrix opers (analogues of opers for matrix differential operators) combine the structures of flat vector bundle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004